
‭Design Document #4‬
‭SDMAY25-11‬

‭4.2 DESIGN EXPLORATION‬

‭4.2.1 Design Decisions‬
‭CREATE AN APP THAT RUNS THROUGH A PHONE CAMERA‬

‭We decided to take an app-based route because we want our solution to be‬
‭accessible to all types of users. While current ball tracking solutions may provide super‬
‭fast and accurate tracking, such as the Goal-Line system in soccer or the Hawkeye‬
‭camera in tennis, these rely on multiple cameras and expensive equipment to‬
‭triangulate the ball’s position. Our solution is based on recreational softball. So, a‬
‭majority of users will not have access or the desire to obtain those resources. A simple‬
‭app that is easy to set up and use, and doesn’t require large financial commitments is‬
‭what we aim to create.‬

‭UTILIZE THE FLUTTER FRAMEWORK FOR APP DEVELOPMENT‬
‭One of the issues with making an app is how to develop it for a specific platform.‬

‭We didn’t want to restrict our product to a certain platform, as that would prevent users‬
‭on the opposite platform from using the app. However, developing two different code‬
‭bases to accommodate both platforms would have caused much more work for the‬
‭team. So, we decided to utilize Google’s Flutter framework which allows iOS and‬
‭Android development to exist in the same code base. This framework allows us to‬
‭develop both sides at one time, which lets us spend more time refining and improving‬
‭our tracking algorithms and UI design.‬

‭USE A HYBRID MACHINE/NON-MACHINE LEARNING DETECTION METHOD‬
‭When deciding on what tracking method to use, our initial approach was to use‬

‭only machine learning. This idea came because we wanted to train a model that‬
‭accurately tracked softballs in various lighting conditions as our product will be used‬
‭during the day and night. This led to design issues because machine learning is slower‬
‭we needed to be able to call illegal pitches at least as fast as a normal umpire. With this‬
‭in mind, we decided to look into non-machine learning, and while it didn’t handle‬
‭changes in environments well, we found that with some calibration, we could get some‬
‭pretty accurate and fast detections. So, we wanted to find a way to implement the‬
‭speed of non-machine learning with the accuracy of non-machine learning. Our current‬
‭method now involves using non-machine, color-based detection to pick up the ball‬

‭initially. Then, we can pipe the camera feed to a YOLO model after a certain number of‬
‭frames to correct any error in the non-machine learning detection. This method will‬
‭make our detection more efficient while not compromising on accuracy.‬

‭4.2.2 Ideation‬
‭One of our design decisions was how to (detect the softball, the use of an app,‬

‭height detection) One of our design decisions was how to accurately and consistently‬
‭identify the softball. We though of many different solutions to this problem. We‬
‭considered using a color-based non-machine learning solution that could detect the ball‬
‭using just the color of the ball. Additionally, we considered using a machine learning‬
‭approach where we manually fed in data for the machine learning to learn the softball.‬
‭We also considered using color-based object detection and some kind of motion-based‬
‭detection to identify the ball more accurately. Another solution we considered was to‬
‭incorporate a machine learning-based solution that took into account the YOLO model's‬
‭already pre-trained data of different kinds of objects including sports balls. The final‬
‭design option that was considered was a sort of middle-ground approach that would use‬
‭non-machine learning object detection techniques such as color-based object detection,‬
‭on top of also using a machine learning-based approach that would use pre-trained‬
‭models.‬

‭4.2.3 Decision-Making and Trade-Off‬
‭1.‬ ‭COLOR-BASED DETECTION MODEL‬

‭-‬ ‭We identified some of the pros and cons of this solution by implementing‬
‭and testing our own models that incorporated color-based detection‬
‭models. We also did some research as well to test the reliability of just the‬
‭color-based detection model.‬

‭-‬ ‭Pros: Very efficient and fast, very accurate up close.‬
‭-‬ ‭Cons: ineffective at farther distances, very inconsistent in differing‬

‭environments and brightness.‬
‭2.‬ ‭MANUALLY INPUTTED DATA FOR MACHINE LEARNING‬

‭-‬ ‭We identified some of the pros and cons of this by manually inputting‬
‭some of the locations of where a softball was with hundreds of different‬
‭images to train the model to start to learn what the softball is and looks‬
‭like. This seemed like a good idea until we found the models that already‬
‭exist that are pre-trained on certain objects like the YOLO model.‬

‭-‬ ‭Pros: gets more accurate with more data, better at identifying softball in‬
‭differing environments.‬

‭-‬ ‭Cons: Very tedious and time-consuming, not guaranteed to work.‬
‭3.‬ ‭COLOR AND MOTION-BASED OBJECT DETECTION‬

‭-‬ ‭We also tried implementing a non-machine learning scenario that involved‬
‭different types of ways and inputs in identifying the softball. We also‬
‭researched some different non-machine learning ways to identify an‬
‭object, and one of them is based on motion, but with other objects moving‬
‭and or an unsteady camera, this way isn’t as reliable without the‬
‭color-based as well, however, it didn’t really improve anything at all.‬

‭-‬ ‭Pros: Very fast and easy to implement, good up close‬
‭-‬ ‭Cons: bad at different environments, not very accurate or reliable at longer‬

‭distances.‬
‭4.‬ ‭MACHINE LEARNING USING PRE-TRAINED MODELS‬

‭-‬ ‭We also identified another machine learning solution that involves already‬
‭pre-trained data so we don’t have to manually teach an AI what a softball‬
‭looks like. We researched different models and the YOLO model seemed‬
‭like it could work the best because it had a sports ball object that it was‬
‭trained with that could consistently identify sports balls.‬

‭-‬ ‭Pros: More accurate, not too difficult to implement, better at different‬
‭environments.‬

‭-‬ ‭Cons: Still could be improved, not as accurate as we want, slow‬
‭5.‬ ‭COLOR AND MACHINE LEARNING MODEL-BASED DETECTION‬

‭-‬ ‭We considered using a mix of machine and non-machine learning to make‬
‭a model that could more accurately identify the ball trying to use the pros‬
‭of the respective aspects of the other solutions. We identified the pros of‬
‭the non-machine learning color-based detection in being fast and pretty‬
‭accurately just identifying the ball up close, so we have color detection as‬
‭the primary initial part in identifying the ball. We also have the machine‬
‭learning aspect with the model to more accurately identify the ball not as‬
‭frequently to make the solution not as slow.‬

‭-‬ ‭Pros: Most accurate that we have identified, better at changing‬
‭environments, not too slow.‬

‭-‬ ‭Cons: Worse at farther distances and certain lighting.‬
‭-‬ ‭We decided to choose this approach as the best approach moving forward‬

‭as if implemented accurately and correctly, would be the best at identifying‬
‭the object consistently and better in changing or differing environments. It‬
‭takes the benefits of non-machine learning and machine learning and tries‬
‭to incorporate only the benefits from both. It serves as a middle ground‬
‭between effectiveness and efficiency as the solution needs to be accurate‬
‭and quicker than the speed of a normal umpire.‬

‭4.3 PROPOSED DESIGN‬

‭4.3.1 Overview‬
‭Starting with the Flutter app on a mobile device, users will have access to set up‬

‭calibration values (distance from home to the pitcher's mound, ball color, etc.) for the‬
‭camera to fit their specific environment. When they enter the tracking screen, our app‬
‭will utilize a camera plugin to access their device’s camera and begin feeding it into our‬
‭C++ code using Dart FFI. Flutter is written in a code language called Dart. Dart FFI‬
‭allows us to run C++ code in a Flutter environment. The C++ code will track the ball‬
‭based on color for the majority of the tracking. Occasionally, the code will utilize a‬
‭YOLO model. This model is created by essentially “training” the code to know what a‬
‭softball looks like. This model will be used to correct errors in the color tracking as the‬
‭environment variables change such as the lighting or changes of the ball’s speed.‬

‭4.3.2 Detailed Design and Visual(s)‬

‭Our softball detection application is built for the purpose of detecting a softball‬
‭during a pitch to determine if a pitch falls within the legal height boundaries as‬
‭dictated by league rules. The components of our system include:‬

‭●‬ ‭A mobile application built with Flutter providing a user interface with a real-time‬
‭display from our softball detection solution‬

‭●‬ ‭The user interface must be updated in real-time during the gameplay, and‬
‭passed pitch decisions must be available.‬

‭●‬ ‭An object detection system capable of identifying the position of a softball relative‬
‭to a camera‬

‭●‬ ‭OpenCV is used in tandem with preexisting open-source sportsball‬
‭detection models to identify softball positions from a video input‬
‭consistently.‬

‭Requirements‬

‭●‬ ‭Must be able to identify an illegal pitch correctly‬
‭●‬ ‭Decisions must be just as fast or faster than an average umpire (at least within .3‬

‭seconds of max height)‬

‭●‬ ‭It must not interfere with the field of play‬
‭●‬ ‭It must be identifiable and clearly indicate to the batter whether the result of the‬

‭pitch is illegal or legal‬
‭The app and the object detection are used together to simultaneously detect the‬
‭legality of the pitch and convey the result to the batter.‬

‭4.3.3 Functionality Diagram‬

‭Above is how the user would instructional download our application, run, and set up an‬
‭additional officiating tool during their slow-pitch softball game.‬

‭4.3.4 Areas of Concern and Development‬

‭While our design is currently in development, the requirements generated by our users‬
‭align with the trajectory of our progress. We are in the process of developing a‬
‭fully-featured mobile application with the capabilities of processing softball pitches in‬
‭real-time – the application is shaping to be easy to use with a clear prioritization of user‬
‭experience, essential for ensuring both referees and players will be able to benefit from‬
‭the use of the application. Our primary concerns as of now are ensuring the application‬
‭runs at a reasonable rate with our softball detection solution, which could affect the‬
‭times at which pitch calls are made. Our immediate plans for circumventing this problem‬
‭is through thorough testing of our softball detection on native devices to ensure proper‬
‭detection runtimes, as well as the continuous optimization of existing detection‬
‭processes. As we move into fully integrating our solution onto a mobile device, potential‬
‭questions for clients include what other additional features would improve the user‬
‭experience of our application and what aspects of our current design could deter from‬
‭the flow of a softball game?‬

‭4.4 TECHNOLOGY CONSIDERATIONS‬
‭Our design uses OpenCV, YOLOv5, and the Flutter framework for capturing, detecting,‬
‭and tracking a moving softball.‬

‭●‬ ‭OpenCV‬‭: Handles image processing and tracking. It’s‬‭fast and versatile but‬
‭requires a custom-built framework for iOS, and we’re encountering a bug with the‬
‭latest version that may force us to use an older release or explore alternatives‬
‭like Apple’s Vision framework.‬

‭●‬ ‭YOLOv5‬‭: Provides efficient object detection, balancing‬‭speed and accuracy for‬
‭real-time tracking. However, it’s focused on detection rather than tracking, so‬
‭we’ve had to integrate separate tracking algorithms. We may explore lighter‬
‭versions (like Tiny YOLO) if more optimization is needed.‬

‭●‬ ‭Flutter‬‭: Enables cross-platform deployment and smooth‬‭UI design. While it‬
‭allows us to deploy on both iOS and Android, integrating it with our C++ code on‬
‭iOS is challenging, and further issues could lead us to consider a native iOS app.‬

‭Overall, each technology was chosen for its ability to handle real-time tracking. Our‬
‭main focus moving forward is resolving the iOS integration issues and optimizing‬
‭performance for fast-moving objects.‬

‭4.5 DESIGN ANALYSIS‬
‭So far, we have successfully integrated OpenCV and YOLO in C++ to create a‬

‭framework capable of detecting and tracking a softball in flight. This integration has‬
‭been efficient, allowing us to confidently believe that our proposed design from 4.3 will‬
‭be feasible in practice.‬

‭We currently have a working Flutter app, and we’ve been able to execute C++‬
‭code within the app on an iPhone. However, we are encountering a significant‬
‭challenge: although our object detection and tracking code runs smoothly in the app on‬
‭a desktop environment, it’s not yet functioning on a mobile device. The issue stems‬
‭from needing a custom OpenCV framework for iOS, and a bug in the most recent‬
‭OpenCV version has prevented us from successfully building this framework. If we‬
‭cannot identify a workaround for this bug, we may need to consider using an earlier‬
‭OpenCV version that does not present this issue.‬

‭Moving forward, we have two main areas to focus on. First, we must resolve the‬
‭OpenCV framework bug, as this is essential to achieving full functionality on iOS.‬
‭Second, we must optimize our object detection and tracking code to reliably track the‬
‭softball even when it’s moving quickly. Currently, the algorithms struggle to capture the‬
‭ball when it appears as a streak in each frame. To address this, we are considering‬
‭increasing the frame rate; modern smartphones can support up to 240 fps, enabling us‬
‭to capture higher-quality images of fast-moving objects.‬

‭Our next steps involve continuing to troubleshoot the framework bug and‬
‭exploring optimization techniques that can handle high-speed tracking. At this point, we‬
‭don’t foresee any major feasibility issues with our overall design—our challenges are‬
‭primarily in the build and optimization stages. If we can overcome these, we expect the‬
‭project to perform as designed.‬

