
 Design Document #4 
 SDMAY25-11 

 4.2 DESIGN EXPLORATION 

 4.2.1 Design Decisions 
 CREATE AN APP THAT RUNS THROUGH A PHONE CAMERA 

 We decided to take an app-based route because we want our solution to be 
 accessible to all types of users.  While current ball tracking solutions may provide super 
 fast and accurate tracking, such as the Goal-Line system in soccer or the Hawkeye 
 camera in tennis, these rely on multiple cameras and expensive equipment to 
 triangulate the ball’s position.  Our solution is based on recreational softball.  So, a 
 majority of users will not have access or the desire to obtain those resources.  A simple 
 app that is easy to set up and use, and doesn’t require large financial commitments is 
 what we aim to create. 

 UTILIZE THE FLUTTER FRAMEWORK FOR APP DEVELOPMENT 
 One of the issues with making an app is how to develop it for a specific platform. 

 We didn’t want to restrict our product to a certain platform, as that would prevent users 
 on the opposite platform from using the app.  However, developing two different code 
 bases to accommodate both platforms would have caused much more work for the 
 team.  So, we decided to utilize Google’s Flutter framework which allows iOS and 
 Android development to exist in the same code base.  This framework allows us to 
 develop both sides at one time, which lets us spend more time refining and improving 
 our tracking algorithms and UI design. 

 USE A HYBRID MACHINE/NON-MACHINE LEARNING DETECTION METHOD 
 When deciding on what tracking method to use, our initial approach was to use 

 only machine learning.  This idea came because we wanted to train a model that 
 accurately tracked softballs in various lighting conditions as our product will be used 
 during the day and night.  This led to design issues because machine learning is slower 
 we needed to be able to call illegal pitches at least as fast as a normal umpire.  With this 
 in mind, we decided to look into non-machine learning, and while it didn’t handle 
 changes in environments well, we found that with some calibration, we could get some 
 pretty accurate and fast detections.  So, we wanted to find a way to implement the 
 speed of non-machine learning with the accuracy of non-machine learning.  Our current 
 method now involves using non-machine, color-based detection to pick up the ball 



 initially.  Then, we can pipe the camera feed to a YOLO model after a certain number of 
 frames to correct any error in the non-machine learning detection.  This method will 
 make our detection more efficient while not compromising on accuracy. 

 4.2.2 Ideation 
 One of our design decisions was how to (detect the softball, the use of an app, 

 height detection) One of our design decisions was how to accurately and consistently 
 identify the softball. We though of many different solutions to this problem. We 
 considered using a color-based non-machine learning solution that could detect the ball 
 using just the color of the ball. Additionally, we considered using a machine learning 
 approach where we manually fed in data for the machine learning to learn the softball. 
 We also considered using color-based object detection and some kind of motion-based 
 detection to identify the ball more accurately. Another solution we considered was to 
 incorporate a machine learning-based solution that took into account the YOLO model's 
 already pre-trained data of different kinds of objects including sports balls. The final 
 design option that was considered was a sort of middle-ground approach that would use 
 non-machine learning object detection techniques such as color-based object detection, 
 on top of also using a machine learning-based approach that would use pre-trained 
 models. 

 4.2.3 Decision-Making and Trade-Off 
 1.  COLOR-BASED DETECTION MODEL 

 -  We identified some of the pros and cons of this solution by implementing 
 and testing our own models that incorporated color-based detection 
 models. We also did some research as well to test the reliability of just the 
 color-based detection model. 

 -  Pros: Very efficient and fast, very accurate up close. 
 -  Cons: ineffective at farther distances, very inconsistent in differing 

 environments and brightness. 
 2.  MANUALLY INPUTTED DATA FOR MACHINE LEARNING 

 -  We identified some of the pros and cons of this by manually inputting 
 some of the locations of where a softball was with hundreds of different 
 images to train the model to start to learn what the softball is and looks 
 like. This seemed like a good idea until we found the models that already 
 exist that are pre-trained on certain objects like the YOLO model. 

 -  Pros: gets more accurate with more data, better at identifying softball in 
 differing environments. 

 -  Cons: Very tedious and time-consuming, not guaranteed to work. 
 3.  COLOR AND MOTION-BASED OBJECT DETECTION 



 -  We also tried implementing a non-machine learning scenario that involved 
 different types of ways and inputs in identifying the softball. We also 
 researched some different non-machine learning ways to identify an 
 object, and one of them is based on motion, but with other objects moving 
 and or an unsteady camera, this way isn’t as reliable without the 
 color-based as well, however, it didn’t really improve anything at all. 

 -  Pros: Very fast and easy to implement, good up close 
 -  Cons: bad at different environments, not very accurate or reliable at longer 

 distances. 
 4.  MACHINE LEARNING USING PRE-TRAINED MODELS 

 -  We also identified another machine learning solution that involves already 
 pre-trained data so we don’t have to manually teach an AI what a softball 
 looks like. We researched different models and the YOLO model seemed 
 like it could work the best because it had a sports ball object that it was 
 trained with that could consistently identify sports balls. 

 -  Pros: More accurate, not too difficult to implement, better at different 
 environments. 

 -  Cons: Still could be improved, not as accurate as we want, slow 
 5.  COLOR AND MACHINE LEARNING MODEL-BASED DETECTION 

 -  We considered using a mix of machine and non-machine learning to make 
 a model that could more accurately identify the ball trying to use the pros 
 of the respective aspects of the other solutions. We identified the pros of 
 the non-machine learning color-based detection in being fast and pretty 
 accurately just identifying the ball up close, so we have color detection as 
 the primary initial part in identifying the ball. We also have the machine 
 learning aspect with the model to more accurately identify the ball not as 
 frequently to make the solution not as slow. 

 -  Pros: Most accurate that we have identified, better at changing 
 environments, not too slow. 

 -  Cons: Worse at farther distances and certain lighting. 
 -  We decided to choose this approach as the best approach moving forward 

 as if implemented accurately and correctly, would be the best at identifying 
 the object consistently and better in changing or differing environments. It 
 takes the benefits of non-machine learning and machine learning and tries 
 to incorporate only the benefits from both. It serves as a middle ground 
 between effectiveness and efficiency as the solution needs to be accurate 
 and quicker than the speed of a normal umpire. 



 4.3 PROPOSED DESIGN 

 4.3.1 Overview 
 Starting with the Flutter app on a mobile device, users will have access to set up 

 calibration values (distance from home to the pitcher's mound, ball color, etc.) for the 
 camera to fit their specific environment.  When they enter the tracking screen, our app 
 will utilize a camera plugin to access their device’s camera and begin feeding it into our 
 C++ code using Dart FFI.  Flutter is written in a code language called Dart. Dart FFI 
 allows us to run C++ code in a Flutter environment.  The C++ code will track the ball 
 based on color for the majority of the tracking.  Occasionally, the code will utilize a 
 YOLO model.  This model is created by essentially “training” the code to know what a 
 softball looks like.  This model will be used to correct errors in the color tracking as the 
 environment variables change such as the lighting or changes of the ball’s speed. 



 4.3.2 Detailed Design and Visual(s) 

 Our softball detection application is built for the purpose of detecting a softball 
 during a pitch to determine if a pitch falls within the legal height boundaries as 
 dictated by league rules. The components of our system include: 

 ●  A mobile application built with Flutter providing a user interface with a real-time 
 display from our softball detection solution 

 ●  The user interface must be updated in real-time during the gameplay, and 
 passed pitch decisions must be available. 

 ●  An object detection system capable of identifying the position of a softball relative 
 to a camera 

 ●  OpenCV is used in tandem with preexisting open-source sportsball 
 detection models to identify softball positions from a video input 
 consistently. 

 Requirements 

 ●  Must be able to identify an illegal pitch correctly 
 ●  Decisions must be just as fast or faster than an average umpire (at least within .3 

 seconds of max height) 



 ●  It must not interfere with the field of play 
 ●  It must be identifiable and clearly indicate to the batter whether the result of the 

 pitch is illegal or legal 
 The app and the object detection are used together to simultaneously detect the 
 legality of the pitch and convey the result to the batter. 



 4.3.3 Functionality Diagram 

 Above is how the user would instructional download our application, run, and set up an 
 additional officiating tool during their slow-pitch softball game. 



 4.3.4 Areas of Concern and Development 

 While our design is currently in development, the requirements generated by our users 
 align with the trajectory of our progress. We are in the process of developing a 
 fully-featured mobile application with the capabilities of processing softball pitches in 
 real-time – the application is shaping to be easy to use with a clear prioritization of user 
 experience, essential for ensuring both referees and players will be able to benefit from 
 the use of the application. Our primary concerns as of now are ensuring the application 
 runs at a reasonable rate with our softball detection solution, which could affect the 
 times at which pitch calls are made. Our immediate plans for circumventing this problem 
 is through thorough testing of our softball detection on native devices to ensure proper 
 detection runtimes, as well as the continuous optimization of existing detection 
 processes. As we move into fully integrating our solution onto a mobile device, potential 
 questions for clients include what other additional features would improve the user 
 experience of our application and what aspects of our current design could deter from 
 the flow of a softball game? 

 4.4 TECHNOLOGY CONSIDERATIONS 
 Our design uses OpenCV, YOLOv5, and the Flutter framework for capturing, detecting, 
 and tracking a moving softball. 

 ●  OpenCV  : Handles image processing and tracking. It’s  fast and versatile but 
 requires a custom-built framework for iOS, and we’re encountering a bug with the 
 latest version that may force us to use an older release or explore alternatives 
 like Apple’s Vision framework. 

 ●  YOLOv5  : Provides efficient object detection, balancing  speed and accuracy for 
 real-time tracking. However, it’s focused on detection rather than tracking, so 
 we’ve had to integrate separate tracking algorithms. We may explore lighter 
 versions (like Tiny YOLO) if more optimization is needed. 

 ●  Flutter  : Enables cross-platform deployment and smooth  UI design. While it 
 allows us to deploy on both iOS and Android, integrating it with our C++ code on 
 iOS is challenging, and further issues could lead us to consider a native iOS app. 

 Overall, each technology was chosen for its ability to handle real-time tracking. Our 
 main focus moving forward is resolving the iOS integration issues and optimizing 
 performance for fast-moving objects. 



 4.5 DESIGN ANALYSIS 
 So far, we have successfully integrated OpenCV and YOLO in C++ to create a 

 framework capable of detecting and tracking a softball in flight. This integration has 
 been efficient, allowing us to confidently believe that our proposed design from 4.3 will 
 be feasible in practice. 

 We currently have a working Flutter app, and we’ve been able to execute C++ 
 code within the app on an iPhone. However, we are encountering a significant 
 challenge: although our object detection and tracking code runs smoothly in the app on 
 a desktop environment, it’s not yet functioning on a mobile device. The issue stems 
 from needing a custom OpenCV framework for iOS, and a bug in the most recent 
 OpenCV version has prevented us from successfully building this framework. If we 
 cannot identify a workaround for this bug, we may need to consider using an earlier 
 OpenCV version that does not present this issue. 

 Moving forward, we have two main areas to focus on. First, we must resolve the 
 OpenCV framework bug, as this is essential to achieving full functionality on iOS. 
 Second, we must optimize our object detection and tracking code to reliably track the 
 softball even when it’s moving quickly. Currently, the algorithms struggle to capture the 
 ball when it appears as a streak in each frame. To address this, we are considering 
 increasing the frame rate; modern smartphones can support up to 240 fps, enabling us 
 to capture higher-quality images of fast-moving objects. 

 Our next steps involve continuing to troubleshoot the framework bug and 
 exploring optimization techniques that can handle high-speed tracking. At this point, we 
 don’t foresee any major feasibility issues with our overall design—our challenges are 
 primarily in the build and optimization stages. If we can overcome these, we expect the 
 project to perform as designed. 


