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4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

CREATE AN APP THAT RUNS THROUGH A PHONE CAMERA

We decided to take an app-based route because we want our solution to be
accessible to all types of users. While current ball tracking solutions may provide super
fast and accurate tracking, such as the Goal-Line system in soccer or the Hawkeye
camera in tennis, these rely on multiple cameras and expensive equipment to
triangulate the ball’s position. Our solution is based on recreational softball. So, a
majority of users will not have access or the desire to obtain those resources. A simple
app that is easy to set up and use, and doesn’t require large financial commitments is
what we aim to create.

UTILIZE THE FLUTTER FRAMEWORK FOR APP DEVELOPMENT

One of the issues with making an app is how to develop it for a specific platform.
We didn’t want to restrict our product to a certain platform, as that would prevent users
on the opposite platform from using the app. However, developing two different code
bases to accommodate both platforms would have caused much more work for the
team. So, we decided to utilize Google’s Flutter framework which allows iOS and
Android development to exist in the same code base. This framework allows us to
develop both sides at one time, which lets us spend more time refining and improving
our tracking algorithms and Ul design.

USE A HYBRID MACHINE/NON-MACHINE LEARNING DETECTION METHOD

When deciding on what tracking method to use, our initial approach was to use
only machine learning. This idea came because we wanted to train a model that
accurately tracked softballs in various lighting conditions as our product will be used
during the day and night. This led to design issues because machine learning is slower
we needed to be able to call illegal pitches at least as fast as a normal umpire. With this
in mind, we decided to look into non-machine learning, and while it didn’t handle
changes in environments well, we found that with some calibration, we could get some
pretty accurate and fast detections. So, we wanted to find a way to implement the
speed of non-machine learning with the accuracy of non-machine learning. Our current
method now involves using non-machine, color-based detection to pick up the ball




initially. Then, we can pipe the camera feed to a YOLO model after a certain number of
frames to correct any error in the non-machine learning detection. This method will
make our detection more efficient while not compromising on accuracy.

4.2.2 Ideation

One of our design decisions was how to (detect the softball, the use of an app,
height detection) One of our design decisions was how to accurately and consistently
identify the softball. We though of many different solutions to this problem. We
considered using a color-based non-machine learning solution that could detect the ball
using just the color of the ball. Additionally, we considered using a machine learning
approach where we manually fed in data for the machine learning to learn the softball.
We also considered using color-based object detection and some kind of motion-based
detection to identify the ball more accurately. Another solution we considered was to
incorporate a machine learning-based solution that took into account the YOLO model's
already pre-trained data of different kinds of objects including sports balls. The final
design option that was considered was a sort of middle-ground approach that would use
non-machine learning object detection techniques such as color-based object detection,
on top of also using a machine learning-based approach that would use pre-trained
models.

4.2.3 Decision-Making and Trade-Off

1. COLOR-BASED DETECTION MODEL
- We identified some of the pros and cons of this solution by implementing
and testing our own models that incorporated color-based detection
models. We also did some research as well to test the reliability of just the
color-based detection model.
- Pros: Very efficient and fast, very accurate up close.
- Cons: ineffective at farther distances, very inconsistent in differing
environments and brightness.
2. MANUALLY INPUTTED DATA FOR MACHINE LEARNING
- We identified some of the pros and cons of this by manually inputting
some of the locations of where a softball was with hundreds of different
images to train the model to start to learn what the softball is and looks
like. This seemed like a good idea until we found the models that already
exist that are pre-trained on certain objects like the YOLO model.
- Pros: gets more accurate with more data, better at identifying softball in
differing environments.
- Cons: Very tedious and time-consuming, not guaranteed to work.
3. COLOR AND MOTION-BASED OBJECT DETECTION




We also tried implementing a non-machine learning scenario that involved
different types of ways and inputs in identifying the softball. We also
researched some different non-machine learning ways to identify an
object, and one of them is based on motion, but with other objects moving
and or an unsteady camera, this way isn’t as reliable without the
color-based as well, however, it didn’t really improve anything at all.

Pros: Very fast and easy to implement, good up close

Cons: bad at different environments, not very accurate or reliable at longer
distances.

4. MACHINE LEARNING USING PRE-TRAINED MODELS

We also identified another machine learning solution that involves already
pre-trained data so we don’t have to manually teach an Al what a softball
looks like. We researched different models and the YOLO model seemed
like it could work the best because it had a sports ball object that it was
trained with that could consistently identify sports balls.

Pros: More accurate, not too difficult to implement, better at different
environments.

Cons: Still could be improved, not as accurate as we want, slow

5. COLOR AND MACHINE LEARNING MODEL-BASED DETECTION

We considered using a mix of machine and non-machine learning to make
a model that could more accurately identify the ball trying to use the pros
of the respective aspects of the other solutions. We identified the pros of
the non-machine learning color-based detection in being fast and pretty
accurately just identifying the ball up close, so we have color detection as
the primary initial part in identifying the ball. We also have the machine
learning aspect with the model to more accurately identify the ball not as
frequently to make the solution not as slow.

Pros: Most accurate that we have identified, better at changing
environments, not too slow.

Cons: Worse at farther distances and certain lighting.

We decided to choose this approach as the best approach moving forward
as if implemented accurately and correctly, would be the best at identifying
the object consistently and better in changing or differing environments. It
takes the benefits of non-machine learning and machine learning and tries
to incorporate only the benefits from both. It serves as a middle ground
between effectiveness and efficiency as the solution needs to be accurate
and quicker than the speed of a normal umpire.



4.3 PROPOSED DESIGN

4.3.1 Overview

Starting with the Flutter app on a mobile device, users will have access to set up

calibration values (distance from home to the pitcher's mound, ball color, etc.) for the

camera to fit their specific environment. When they enter the tracking screen, our app
will utilize a camera plugin to access their device’s camera and begin feeding it into our

C++ code using Dart FFI. Flutter is written in a code language called Dart. Dart FFI
allows us to run C++ code in a Flutter environment. The C++ code will track the ball
based on color for the majority of the tracking. Occasionally, the code will utilize a

YOLO model. This model is created by essentially “training” the code to know what a
softball looks like. This model will be used to correct errors in the color tracking as the

environment variables change such as the lighting or changes of the ball’'s speed.
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4.3.2 Detailed Design and Visual(s)

Our softball detection application is built for the purpose of detecting a softball
during a pitch to determine if a pitch falls within the legal height boundaries as
dictated by league rules. The components of our system include:

e A mobile application built with Flutter providing a user interface with a real-time
display from our softball detection solution
e The user interface must be updated in real-time during the gameplay, and
passed pitch decisions must be available.
e An object detection system capable of identifying the position of a softball relative
to a camera
e OpenCV is used in tandem with preexisting open-source sportsball
detection models to identify softball positions from a video input
consistently.

Requirements
e Must be able to identify an illegal pitch correctly

e Decisions must be just as fast or faster than an average umpire (at least within .3
seconds of max height)



e It must not interfere with the field of play
e |t must be identifiable and clearly indicate to the batter whether the result of the
pitch is illegal or legal

The app and the object detection are used together to simultaneously detect the
legality of the pitch and convey the result to the batter.



4.3.3 Functionality Diagram
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Above is how the user would instructional download our application, run, and set up an
additional officiating tool during their slow-pitch softball game.




4.3.4 Areas of Concern and Development

While our design is currently in development, the requirements generated by our users
align with the trajectory of our progress. We are in the process of developing a
fully-featured mobile application with the capabilities of processing softball pitches in
real-time — the application is shaping to be easy to use with a clear prioritization of user
experience, essential for ensuring both referees and players will be able to benefit from
the use of the application. Our primary concerns as of now are ensuring the application
runs at a reasonable rate with our softball detection solution, which could affect the
times at which pitch calls are made. Our immediate plans for circumventing this problem
is through thorough testing of our softball detection on native devices to ensure proper
detection runtimes, as well as the continuous optimization of existing detection
processes. As we move into fully integrating our solution onto a mobile device, potential
questions for clients include what other additional features would improve the user
experience of our application and what aspects of our current design could deter from
the flow of a softball game?

4.4 TECHNOLOGY CONSIDERATIONS

Our design uses OpenCV, YOLOvS5, and the Flutter framework for capturing, detecting,
and tracking a moving softball.

e OpenCV: Handles image processing and tracking. It’s fast and versatile but
requires a custom-built framework for iOS, and we’re encountering a bug with the
latest version that may force us to use an older release or explore alternatives
like Apple’s Vision framework.

e YOLOVS5: Provides efficient object detection, balancing speed and accuracy for
real-time tracking. However, it's focused on detection rather than tracking, so
we’ve had to integrate separate tracking algorithms. We may explore lighter
versions (like Tiny YOLO) if more optimization is needed.

e Flutter: Enables cross-platform deployment and smooth Ul design. While it
allows us to deploy on both iOS and Android, integrating it with our C++ code on
iOS is challenging, and further issues could lead us to consider a native iOS app.

Overall, each technology was chosen for its ability to handle real-time tracking. Our
main focus moving forward is resolving the iOS integration issues and optimizing
performance for fast-moving objects.



4.5 DESIGN ANALYSIS

So far, we have successfully integrated OpenCV and YOLO in C++ to create a
framework capable of detecting and tracking a softball in flight. This integration has
been efficient, allowing us to confidently believe that our proposed design from 4.3 will
be feasible in practice.

We currently have a working Flutter app, and we’ve been able to execute C++
code within the app on an iPhone. However, we are encountering a significant
challenge: although our object detection and tracking code runs smoothly in the app on
a desktop environment, it's not yet functioning on a mobile device. The issue stems
from needing a custom OpenCV framework for iOS, and a bug in the most recent
OpenCV version has prevented us from successfully building this framework. If we
cannot identify a workaround for this bug, we may need to consider using an earlier
OpenCV version that does not present this issue.

Moving forward, we have two main areas to focus on. First, we must resolve the
OpenCV framework bug, as this is essential to achieving full functionality on iOS.
Second, we must optimize our object detection and tracking code to reliably track the
softball even when it's moving quickly. Currently, the algorithms struggle to capture the
ball when it appears as a streak in each frame. To address this, we are considering
increasing the frame rate; modern smartphones can support up to 240 fps, enabling us
to capture higher-quality images of fast-moving objects.

Our next steps involve continuing to troubleshoot the framework bug and
exploring optimization techniques that can handle high-speed tracking. At this point, we
don’t foresee any major feasibility issues with our overall design—our challenges are
primarily in the build and optimization stages. If we can overcome these, we expect the
project to perform as designed.



